

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 869474.

Acknowledgements

This report was produced under the co-finance of the European financial instrument H2020 as the fourth Deliverable (D3.4) of Work Package 3 (WP3) of WATER-MINING project (Grant Agreement No 869474) during the implementation of its Task 3.2 entitled "Manufacturing and installation of the demo plants".

The WATER-MINING team would like to acknowledge the European H2020 financial instrument for the financial support.

Disclaimer

The information included herein is legal and true to the best possible knowledge of the authors, as it is the product of the utilization and synthesis of the referenced sources, for which the authors cannot be held accountable.

Keywords

• Brines • Seawater Desalination • Resource Recovery • Demonstration • Installation

The WATER-MINING project has received funding from the European Commission under the Horizon 2020 programme, Grant Agreement No 869474. The opinions expressed in this document reflect only the author's view and do not reflect the European Commission's opinions. The European Commission is not responsible for any use that may be made of the information it contains.

Deliverable information

Deliverable 3.4	Demo systems used in CS1 & CS2
Related Work Package	WP3
Deliverable lead	TU Delft
Author(s)	Dr. Dimitris Xevgenos
Contact	d.xevgenos@tudelft.nl
Reviewer	Philipp Wilfert (TU Delft)
Grant Agreement Number	869474
Instrument	H2020 (Innovation Action)
Start date	1 st September 2020
Duration	48 months
Type of Delivery ¹	ORDP
Dissemination Level ²	PU
Date last update	28 February 2022
Website	www.watermining.eu
Name of contributors	Dionysia Diamantidou (LENNTECH) Andrea Cipollina (UNIPA) Alessandro Trezzi (SOFINTER) Christina Xenogianni (THERMOSSOL)
	Diego Alarcon (CIEMAT) Despina Sapoutzi, Maria Loizidou (SEALEAU) Dimitris Xevgenos, Marcos Rodriguez, Rodoula Ktori (TUDELFT)

History of changes

Version	Date	Description	Author(s)
0.1	18/10/2021	Structure of the report	Dimitris Xevgenos
0.2	December 2021	Addition of information on EFC (templateDimitris Xevgenos,For collection of other demo information)Marcos Rodriguez	
0.3	24/01/2022	Draft version of integrated report	Dimitris Xevgenos
0.4	18/02/2022	Review	Philipp Wilfert (TUDELFT)
0.5	23/02/2022	Final review by coordination team	Project Management Team (TUDELFT)
1.0	28/02/2022	Final version of the deliverable	Dimitris Xevgenos

WATER-MINING – Next Generation Smart Water Management Systems.

¹ **R**=Document, report; **DEM**=Demonstrator, pilot, prototype; **DEC**=website, patent fillings, videos, etc.; **OTHER**=other; **ETHICS**=Ethics requirement, **ORDP**=Open Research Data Pilot

² **PU**=Public; **CO**=Confidential, only for members of the consortium (including the Commission Services); **EU-RES** Classified Information: RESTREINT UE (Commission Decision 2005/444/EC); **EU-CON** Classified Information: CONFIDENTIEL UE (Commission Decision 2005/444/EC); **EU-SEC** Classified Information: SECRET UE (Commission Decision 2005/444/EC)

(page intentionally left blank)

Executive Summary

This deliverable comprises the fourth deliverable of Work Package 3 and presents the two demo systems that are being installed at the two case studies of WATER-MINING project, namely CS1 in SELIS, Italy and CS2 in Plataforma Solar di Almeria, in Spain.

After providing an overview of the project (Section 1) and the objectives and scope of this deliverable (Section 2), an introduction is given, providing detailed information about the two case studies in Section 3.

In <u>Section 4</u>, the demo system that is being installed at Lampedusa island, at the site of SELIS in Italy is provided. For each process unit details about the capacity, the operating conditions, the dimensions and energy (and utility) requirements are provided, as well as pictures from the constructed equipment. Each process unit has been given a unique code according to the case study that is being used and the main operation performed (BP: Brine Purification, BC: Brine Concentration, BCr: Brine Crystallization), these include the following:

- CS1/BP-1: Nanofiltration 1
- CS1/BP-2: Nanofiltration 2
- CS1/BP-3: Electrodialysis Bipolar Membranes
- CS1/BC-1: Multiple Effect Distillation 1
- CS1/BC-2: Multiple Effect Distillation 2
- CS1/BC-3: High Pressure Nanofiltration
- CS1/BCr-1: Eutectic Freeze Crystallization
- CS1/BCr-2: Laser Induced Cavitation Crystallization
- CS1/BCr-3: Multiple Feed Plug Flow Reactor

In <u>Section 5</u>, the demo system that has been installed at Plataforma Solar di Almeria, in Spain is provided, following the same approach as the previous section. The system components described are:

- CS2/BP-1: Nanofiltration 3
- CS2/BC-1: Multiple Effect Distillation 3

Finally in <u>Section 6</u>, some concluding remarks are given, providing an overview of all demo components, as well as information for next steps, including the installation, start-up and operation of the demo systems.

Table of Contents

Ex	ecutive	Summary	5
Та	ble of C	ontents	5
Lis	st of Figu	ıres {	3
Lis	st of Tab	les)
1.	Overvie	ew of the project 11	L
2.	Scope o	of the deliverable	3
3.	Introdu	ction 15	5
	3.1.	Case Study 1 : SELIS - Lampedusa island, Italy15	5
	3.2.	Case Study 2 : Plataforma Solar di Almeria (PSA) - Spain12	7
4.	Demo s	ystem used in CS1 19)
	4.1.	CS1/BP-1: Nanofiltration 1 (NF-1)	C
	4.2.	CS1/BP-2: Nanofiltration 2 (NF-2)	2
	4.3.	CS1/BP-3: Electrodialysis with Bipolar Membranes (EDBM)23	3
	4.4.	CS1/BC-1: Multiple Effect Distillation demo system (MED-1)	7
	4.5.	CS1/BC-2: Multiple Effect Distillation pilot system (MED-2)	1
	4.6.	CS1/BC-3: High pressure nanofiltration (HPNF)	2
	4.7.	CS1/BCr-1: Eutectic Freeze Crystallization (EFC)	1
	4.8.	CS1/BCr-2: Laser induced cavitation crystallization (LICC)	7
	4.9.	CS1/BCr-3: Multiple Feed Plug Flow Reactor (MF-PFR)	Э
5.	Demo s	ystem used in CS2 42	2
	5.1.	CS2/BP-1: Nanofiltration-3	2
	5.2.	CS2/BC-1: Multiple Effect Distillation unit (MED-3)	5
6.	Conclue	ding remarks	3

6.1.	Overview of the demo system components	48
6.2.	Installation, start-up and next steps	. 48

List of Figures

Figure 3-1: Process flow diagram for Case study 1 in Italy.	15
Figure 3-2: Process flow diagram for Case study 2 in Spain	17
Figure 6-1: Installation site of Case Study 1 demonstration at the premises of SELIS power sta	ition,
Lampdedusa Island, Italy	51
Figure 6-2: Installation site of Case Study 2 demonstration at the premises of CIEMAT, Almeria, S	
	53

List of Tables

	_
Table 3-1: Case Study 1 – summary description 16	
Table 3-2: Case Study 2 – summary description 18	
Table 4-1: Summary of nanofiltration demo system used in CS1 (code: CS1/BP-1) 20	
Table 4-2: Connections of the NF-1 system to other process units21	
Table 4-3: Summary of the nanofiltration pilot system used in CS1 (code: CS1/BP-2)22	2
Table 4-4: Summary of the EDBM demo system used in CS1 (code: CS1/BP-3)	3
Table 4-5: Connections of the EDBM system (Code: CS1/BP-3) to other process units	5
Table 4-6: Summary of MED demo system used in CS1 (code: CS1/BC-1)27	7
Table 4-7: Connections of the MED-1 system (Code: CS1/BC-1) to other process units)
Table 4-8: Summary of MED pilot system used in CS1 (code: CS1/BC-2)	L
Table 4-9: Summary of HPNF demo system used in CS1 (code: CS1/BC-3)	2
Table 4-10: Connections of High Pressure Naniflitration (Code: CS1/BC-3) to other process units 33	3
Table 4-11: Summary of the EFC demo system used in CS1 (code: CS1/BCr-1)	1
Table 4-12: Connections of the EFC (Code: CS1/BCr-1) with other process units	5
Table 4-13: Summary of the LICC pilot system used in CS1 (code: CS1/BCr-2)	7
Table 4-14: Summary of the multiple feed plug flow reactor demo system used in CS1 (code: CS1/BCr-	-
3))
Table 4-15: Connections of the MF-PFR (Code: CS1/BCr-3) with other process units	L
Table 5-1: Summary of nanofiltration demo system used in CS2 (code: CS2/BP-1)42	2
Table 5-2: Sensors and components of nanofiltration demo used in CS244	1
Table 5-3: Summary of the MED demo system used in CS2 (code: CS2/BC-1)	5
Table 5-4: Sensors and components of the MED demo used in CS2	7
Table 6-1: Overview of the demo systems used in CS1 & CS2, and their main componets/process units	
	£

Acronyms

CE	Circular Economy
CS	Case Study
EFC	Eutectic Freeze Crystallization
EDBM	Electrodialysis Bipola Membranes
HPNF	High Pressure Nanofiltration
LICC	Laser Induced Cavitation Crystallization
MED	Multiple Effect Distillation
NF	Nanofiltration
WP	Work Package

1. Overview of the project

WATER-MINING is a project funded by the European Commission (Horizon 2020 – Grant Agreement No 869474) with a total duration of 48 months (Start date: 01/09/2020 - 31/08/2024) and a total budget of approx \notin 19 million (EU Contribution: \notin 16,876,959.59). The project is entitled "Next generation water-smart management systems: large scale demonstrations for a circular economy and society" and it is a project granted under the call topic "<u>CE-SC5-04-2019</u>: Building a water-smart economy and society". Further information about all the sister projects funded under this topic can be found at the CORDIS website here. The WATER-MINING consortium comprises 38 partners from 12 countries, led by the Delft University of Technology (TU Delft). More information about the project can be found at the project website (https://watermining.eu) as well as the dedicated website at CORDIS database (https://cordis.europa.eu/project/id/869474), while an overview is provided below.

The WATER-MINING project aims to provide for real-world implementations of Water Framework Directive (and other water related legislation), as well as the Circular Economy and EU Green Deal packages by showcasing and validating innovative next generation water resource solutions at precommercial demonstration scale. These solutions combine WATER management services with the recovery of value-added renewable resources extracted/MINED from alternative water resources ("WATER-MINING").

The project integrates selected innovative technologies that have reached proof of concept levels under previous EU projects. The value-added end-products (water, platform chemicals, energy, nutrients, minerals) are expected to provide regional resource supplies to fuel economic developments within a growing demand for resource security. Different layouts for urban wastewater treatment and seawater desalination are proposed, to demonstrate the wider practical potential to replicate the philosophy of approach in widening circles of water and resource management schemes. Innovative service-based business models (such as chemical leasing) are being introduced to stimulate progressive forms of collaboration between public and private actors and access to private investments, as well as policy measures to make the proposed water solutions relevant and accessible for rolling out commercial projects in the future. The goal is to enable costs for the recovery of the resources to become distributed across the whole value chain in a fair way, promoting business incentives for investments from both suppliers and end-users along the value chain. The demonstration case studies are to be first implemented in five EU countries (NL, ES, CY, PT, IT) where prior successful technical and social steps have already been accomplished. The broader project consortium representation will be an enabler to transferring trans-disciplinary project know-how to the partner countries while motivating and inspiring relevant innovations throughout Europe.

(page intentionally left blank)

2. Scope of the deliverable

Within WATER-MINING project, Work Package 3 (WP3) is focusing on the "Demonstration of renewable desalination and sustainable brine management". WP3 is structured on the following four (4) Tasks:

- Task 3.1: Detaled design for renewable desalination/brine minimization and salt recovery;
- Task 3.2: Manufacturing and installation of the demo plants;
- Task 3.3: Operation and optimization of the large-scale demonstration plants; and
- Task 3.4: Coordination of WP3 activities and interrelation with other WPs.

The results from the implementation of this work package are presented through six (6) deliverables:

- Deliverable 3.1: Design procedure bench-scale tests (connected to Task 3.1);
- Deliverable 3.2: Report operation & optimization process (connected to Task 3.3);
- Deliverable 3.3: Report on technical results from the implementation of WP3 input for interrelated WPs (connected to Task 3.4);
- Deliverable 3.4: Demo systems used in CS1 and CS2 (connected to Tasks 3.2 & 3.3);
- Deliverable 3.5: Report on technical results from the implementation of WP3 input for interrelated WPs (1st update) (connected to Task 3.4); and
- Deliverable 3.6: Report on technical results from the implementation of WP3 input for interrelated WPs (2nd update) (connected to Task 3.4);

The current deliverable comprises the fourth deliverable of WP3. The work was led by TU Delft within Task 3.2, and it involved the technology suppliers for the different process units that are installed in the two demo locations, namely in Lampedusa island, Italy (Case Study 1, CS1) and Plataforma Solar di Almeria, Spain (Case Study 2, CS2).

This deliverable comprises the "Demonstrator" deliverable foreseen within WP3. The two demo systems that are installed in the two case studies comprise the physical demonstrators developed within WP3, while this deliverable aims to provide information on the demo systems (and its components) in the form of a report.

This deliverable is also a "Public" deliverable, thus not containing any confidential information.

(page intentionally left blank)

3. Introduction

Within WP3 two Case Studies (CS) are foreseen:

- Case Study 1 (CS1): Lampedusa island, Italy; and
- Case Study 2 (CS2): Plataforma Solar di Almeria, Spain.

More information about the case studies are provided in the sections below, while the demo systems installed at CS1 is presented in <u>Section 4</u>, and at CS2 in <u>Section 5</u>.

3.1. Case Study 1 : SELIS - Lampedusa island, Italy

In CS1, seawater is fed to the nanofiltration unit, resulting in two different streams: one that is rich in monovalent ions, and one that is rich in multi-valent ions. The former is directed to a process line of conventional units, which first includes the Multiple Effect Distillation unit that produces water via an evaporation process. Following this unit, the stream goes to a thermal crystallizer and then to a dryer to finally obtain NaCl crystals. The concentrate stream from NF unit is fed to a Multiple feed plug flow reactor (MF-PFR) to recover Mg(OH)2, Ca(OH)2. The residual stream is treated by an Eutectic freeze crystallizer (EFC) to recover Na2SO4. Finally, an Electrodialysis with Bipolar Membranes (EDBM) is used to recover HCl and NaOH from a NaCl rich stream. Overall, this treatment chain represents a Zero Liquid Discharge (ZLD) system aiming to maximize the freshwater recovery and to recover valuable resources from brine, such as NaCl, Mg(OH)2, Ca(OH)2, Na2SO4, HCl, NaOH. Below a process flow diagram, the numbers indicate the number of buffer tanks in between the different process units.

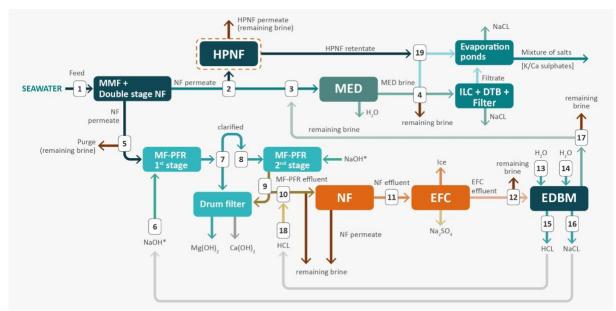


Figure 3-1: Process flow diagram for Case study 1 in Italy.

Below a description of the status of the case study before the project and the expected impact after the project completion is also provided.

CS1 Name CS1 Owner Scale & capacity	S.EL.I.S. Lampedusa - Italy SELIS (Partner No: 6) Large demo – 2,250 l/h	LAMPEDUSA S.p.A.
Key CE intervention	 Zero Liquid Discharge Seawater Desalination Internal use of recovered resources Waste heat integration 	
Relevant sectors	 Power Industry, Drinking water, Salt Industry 	
Special focus	 Economic innovation: Public Private Partnership / creation of spin-off for full-scale implementation /recovery of magnesium & other compounds Environmental damage from brine discharge Social focus: water security 	

Table 3-1: Case Study 1 – summary description

Status of the case study at the start of the project:

Lampedusa is a small island close to Sicily, experiencing sever water stress. Desalination was introduced in 1972. Currently there is one desalination plant covering almost 100% of the total drinking water needs of the island: the plant is located in Cala Pisana, very close to the main village of Lampedusa. The energy consumption of the desalination sector accounts for approx. 10% of the total energy consumption. The desalination plant in Lampedusa has been developed by Private Partnerships through Built, Own, Operate, Transfer (BOOT) Contracts, where private companies using their own funds, undertake the design, construction and operation of the Plants over a fixed period. The Government has the obligation to buy 100% of desalinated water each year over that fixed period (10 years). With private-sector entities, the governments can use the private sectors' knowledge, experience and financing capacity to improve the quantity and quality of basic public services. Lampedusa power station has an installed capacity of 22 MW (8 diesel engines of different power) generating the 100% of the total electric output of the island. The private consortium operating the desalination plant is made by 3 different private partners (SOFIP, ACCIONA, PROTECNO) and is operating today a seawater desalination unit of a total installed capacity of around 3,500 m³/day (2x1,500, 1x1,000 m³/day) installed very close to the Lampedusa power station. The desalination unit (Reverse Osmosis) covers the drinking water needs of Lampedusa. The water is being sold at a fixed and guaranteed price to the Water Department of Sicily.

Demonstration: The demo system is being installed at the power plant site in Lampedusa island. The WP3 demo is able to produce approx. 50 m³ of water per day, which corresponds to **5%** of the installed desalination capacity from one of the 3 RO units.

Ambition at the end of the project and beyond:

Full-scale implementation. Adoption of proposed SEA-MINING technique for development of multiple purpose plants for production of power / water / salts, using power plants as the driving force for implementation through the use of waste heat. High replicability potential in more than 2,200 islands within Europe and beyond.

3.2. Case Study 2 : Plataforma Solar di Almeria (PSA) - Spain

The demo system to be operated by CIEMAT at Plataforma Solar de Almería (PSA), in Tabernas, Spain, comprises a 14 effects Multi-Effect Distillation (MED) plant as the most efficient thermal desalination technology at an industrial scale. The plant has a nominal feed water flow rate of 8 m³/h and produces 3 m³/h of distilled water with a maximum operating temperature of 70°C, using a thermal power of 190 kWth with a performance ratio almost 10. The MED plant will be powered by low temperature solar heat. The demo will use solar thermal energy from stationary flat plate collectors (a solar field composed of 60 collectors with total aperture area of 606 m²), but the same energy can come from waste heat from Concentrated Solar Power plants. By integrating the desalination in that cogeneration scheme, the main obstacle (high investment cost of the solar collectors) can be avoided. In addition, the coupling of the MED plant would have no detrimental effect on the efficiency of the power cycle because we propose to use innovative CSP configurations with high temperature power cycles (air Brayton cycles with central receiver solar towers) with enough waste heat to integrate a thermal desalination system with no penalty.

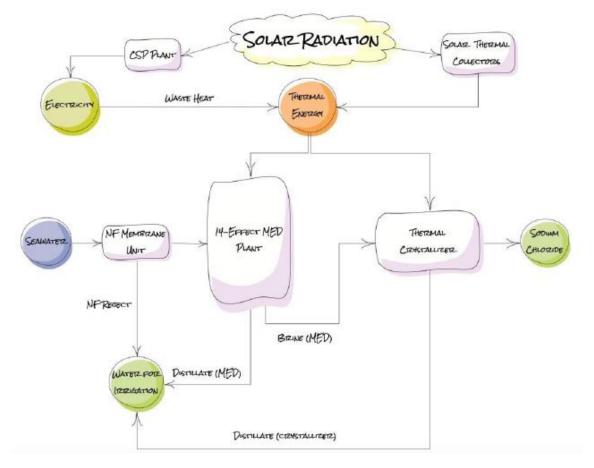


Figure 3-2: Process flow diagram for Case study 2 in Spain.

To improve the efficiency of the thermal desalination process, the seawater being fed to the MED will be pre-treated by a nanofiltration (NF) system to retain the divalent ions (Mg^{2+} , Ca^{2+} , SO_4^{2-}), resulting in a sodium chloride (NaCl) rich and purified permeate stream. By using this as feed, the recovery of the MED plant can be increased, and also the operating temperature (typically limited to 70°C to avoid scaling), enhancing the thermal efficiency significantly. The aim is to demonstrate the potential of reaching a record-breaking lowest energy consumption in thermal desalination (below 25 kWh_{th}/m³) without exceeding 100°C in the Top Brine Temperature. In addition, the use of polymeric materials in the MED plant replacing metallic evaporator tubes will be evaluated to decrease the cost of the

desalination plant. To achieve Zero Liquid Discharge desalination, the concentrated brine released from the MED plant will be treated with solar-powered crystallization. After the NF pre-treatment of the feed, the brine from the MED will be free from divalent salts and thus the salts produced in the crystallizer can be pure NaCl with higher added value. Furthermore, the brine from the NF system, with a larger concentration of divalent salts, will be used to remineralize the distilled water produced in the MED, to be used for irrigation (divalent ions are tolerated by crops, as a matter of fact some act as fertilizers). The products recovered from the seawater will therefore be water for irrigation and high quality NaCl salts.

CS2 Name	Plataforma Solar di Almeria - Spain	a.*
CS2 Owner	CIEMAT (Partner No: 7)	1200
Scale & capacity	Large demo – 2,5000 l/h	Ciemot T. CIFT
Key CE intervention	 Zero Liquid Discharge Seawater Desalination Renewable energy & Decarbonization of energy in desalination & brine concentration 	
Relevant sectors	 Renewable Power Industry, Drinking water, Agricultural Water, Salt Industry 	
Special focus	 Social focus: co-creation with stakeholders Establishment of a Living Lab focused on renewable powered desalination 	

Table 3-2: Case Study	/ 2 – summary	description
Table J Z. Case Study	z summar	yucscription

Status of the case study at the start of the project:

Plataforma Solar di Almeria (PSA) comprises a site of 400,000 m² belonging to CIEMAT. This site is the largest concentrating solar technology research, development and test centre in Europe. The site is recognized by the EU as a "Large European Science Facility" and by the Spanish Government as an ICTS ("Unique Scientific and Technical Infrastructure"). Moreover, it houses the biggest renewable driven, thermal desalination system in Europe. The thermal desalination system has been developed thanks to EU Funding (FP7) and being upgraded thranks to Sturtural Funding. It comprises the largest multi-effect distillation (MED) unit (of forward-feed, vertically stacked design) made up of 14 effects with direct seawater supply to the first effect (forward feed configuration) and one of the largest renewable powered thermal desalination systems at global scale. It is powered by a solar field composed of 60 stationary flat plate solar collectors with a total aperture area of 606 m². At a nominal 8 m³/h feedwater flow rate, the distillate production is 3 m³/h, and the thermal consumption of the plant is 190 kW_{th}, with a performance ratio almost 10, one of the highest achieved in thermal desalination.

Demonstration: The demo system will be installed at CIEMAT and will treat 50% of the brine effluent generated from the thermal desalination system.

Ambition at the end of the project and beyond:

Demonstration of record-breaking lowest energy consumption of thermal desalination (below 25 kWh_{th}/m³ of low enthalpy heat solar heat at 100 °C maximum) and integration with renewable energy. CIEMAT will also become a Living Lab for "Renewable Powered Desalination and Brine Recycling", with a strong focus on Concentrated Solar Power (CSP) developments to support sustainable desalination concepts.

4. Demo system used in CS1

The demo system used in Case Study 1 comprises the following process units:

- Nanofiltration (NF):

There are two nanofiltration units developed: one owned by LENNTECH, described in <u>Table 4-1</u> with the code CS1/BP-1 and one owned by TU Delft, described in <u>Table 4-3</u> with the code CS1/BP-2.

- Electrodialysis with Bipolar Membranes (EDBM):

This process unit is owned by UNIPA and is described in <u>Table 4-4</u> with the code CS1/BP-3.

- Multiple Effect Distillation (MED):

There are two MED units developed: one owned by THERMOSSOL, the manufacture was based on the design made by SOFINTER. This unit is described in <u>Table 4-6</u>, with the code CS1/BC-1. Annother MED unit owned by NTUA & SEALEAU is also available for use, this MED unit is described in <u>Table 4-8</u>, with the code CS1/BC-2.

- High Pressure Nanofiltration (HPNF):

This process unit is owned by LENNTECH and is described in <u>Table 4-9</u> with the code CS1/BC-3.

Eutectic Freeze Crystallization (EFC):
 This process unit is owned by TU Delft. The description of the EFC unit is provided in <u>Table</u>
 <u>4-11</u>, with the code CS1/BCr-1.

- Laser Induced Cavitation Crystallization (LICC):

This process unit is owned by TU Delft. The description of the LICC unit is provided in <u>Table</u> <u>4-13</u>, with the code CS1/BCr-2.

- Multiple Feed Plug Flow Reactor (MF-PFR)

This process unit is owned by UNIPA and is described in <u>Table 4-14</u> with the code CS1/BCr-3.

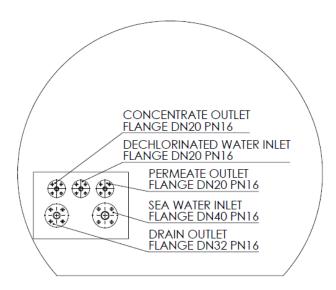
4.1. CS1/BP-1: Nanofiltration 1 (NF-1)

Table 4-1: Summary of nanofiltration demo system used in CS1 (code: CS1/BP-1)

CS1 equipment: BP-1	🗆 Be	nch-scale system
Owner: Lenntech	🗆 Pil	ot-scale System
	🗹 La	rge pilot/Demo System
Capacity ~1,700 L/h	Operating pressure	0-40 bars
 Product streams NF permeate: Purified sodium chloride (NaCl) stream 	Working temperature	5°C to 40 °C
 NF concentrate:Concentrate stream rich in magnesium (Mg²⁺), calcium (Ca²⁺) and sulfate (SO₄²⁻) ions 	Power supply	Main power supply: 3-phase, 400 V/50Hz, max 100A
	NF skid height	2,154 mm
	NF skid length	4,682 mm (including the HPP)
	Power consumption	Max 33 kW
	Construction / materials	Low pressure parts in PVC High pressure parts in SS316 Skid in SS304
		40ft HC container (12m x 2.35m x 2.69m) (Length x Width x Height)
	Container	(50 mm EPS with aluminum 0.4mm plates)

Other

The pilot requires an electric power supply (3-phase, 400 V/50Hz, max 100A) and clean nonchlorinated water (demi water from RO plant). The pilot is fully automatic. The pilot should run at least 6 hours per day.


3-D sketch of the NF skid	3D sketch of the container

CS1 equipment:	BP-1		Bench-scale system	
Owner:	Lenntech		Pilot-scale System	
		Ø	Large pilot/Demo System	
Safety Detailed safety instructions will be provided in the IOM manual of the system				
Contact Persons Dionysia Diamantidou (<u>dionysia@lenntech.com</u>), Tomas Giele (tomas@lenntech.com)				

Table 4-2: Connections of the NF-1 system to other process units

No	Size	Туре	Description
1	DN20	Flange (Concentrate Outlet)	To feed tank of MF-PFR
2	DN20	Flange (Dechlorinated Water Inlet)	From RO permeate (Desalination Plant)
3	DN20	Flange (Permeate Outlet)	To feed tank of MED or to staged NF
4	DN40	Flange (Sea Water Inlet)	From well pump
5	DN32	Flange (Drain Outlet)	To drain

4.2. CS1/BP-2: Nanofiltration 2 (NF-2)

Table 4-3: Summary of the nanofiltration pilot system used in CS1 (code: CS1/BP-2)

CS1 equipment: BP-3	2	Bench-scale system	
Owner: TUD	ELFT	Pilot-scale System	
		□ Large pilot/Demo System	
	Operating pressure	40bar	
Capacity 300 l/h	Working temperature	25 °C	
	Applied voltage	N/A	
	Inlet chemicals	N/A	
Main product Concentrate stream	Outlet chemicals	N/A	
	Refrigeration fluid	N/A	
By-products		Pressure booster: single phase, 220V	
Permeate stream	Power supply	Pressure pump: 3 phase, 380V	
FFF	Frame height	1.6m	
	Frame length	0.7 m	
	Power consumption	0.5kW (pressure booster) 2.58 kW (high pressure pump) Total: 3.5 kW (3-phase)	
	Construction / materials	Stainless steel (316) reactor mounted in aluminium frame	
	Container	Part of EFC container 20" container (6m x 2.5m x2.5 m) (Length x Width x Height) Thermal and acoustic insulation (foam) an wooden wall frame (for thermal insulation and fixing/mounting purposes).	

Other

The pilot requires only an electric power supply (both single and 3-phase) and water for cleaning purposes. Set-up is automated. End of the operation membrane flushing (manual)

Safety

High pressure

Contact Persons

Dr. Dimitris Xevgenos (<u>d.xevgenos@tudelft.nl</u>),

Dr. Marcos Rodriguez (<u>m.rodriguezpascual@tudelft.nl</u>)

4.3. CS1/BP-3: Electrodialysis with Bipolar Membranes (EDBM)

Table 4-4: Summary of the EDBM demo system used in CS1 (code: CS1/BP-3)

CS1 equipment: BP-3	3	Bench-scale system	
Owner: UNI	PA	Pilot-scale System	
		☑ Large pilot/Demo System	
	Operating pressure	Depending on the operating flow rate: At minimum flow rates 0-0.5 barg At maximum flow rates 0-3.5 barg	
	Working temperature	From 5°C to 40°C	
	Applied voltage (for EDBM stack)	20-70 V DC	
Capacity	Applied current (for EDBM stack)	10-80 A DC	
100 L/h	Flow rates (inside EDBM, including recycles)	Acid compartment: 4-20 L/min Base compartment: 4-20 L/min Salt compartment: 4-20 L/min ERS compartment: 20-30 L/min	
	Inlet chemicals	Acid compartment: Demi-water Base compartment: Demi-water Salt compartment: Synthetic or real brines (0.5-3M) ERS compartment: Na ₂ SO ₄ solution ~0.2M	
Main product Sodium hydroxide solution, Hydrochloric acid solution,	Outlet chemicals	Acid compartment: Hydrochloric (and sulfuric) acid solution 0.5-2M Base compartment: Sodium (and potassium) hydroxide solution 0.5-2M Salt compartment: Low salty solution 0.1- 1M (max 2M) ERS compartment: similar to the inlet ERS.	
Low salty solution	Refrigeration fluid	not used	
	Power supply: 2 x 3-phases (400V)	4xPump: 3-phase, 400 V/50Hz	
	power	DC drive: 3-phase, 400V/50Hz	
	Peak current 2 x 63A	Air conditioner: single phase, 230 V/50 Hz	
	Max Power ~ 2 x 20kW Nominal Power (total) ~ 15-18 kW Further details for each single unit>	Fan: single phase, 230 V/50 Hz	
By-products not applicable		2xPower suppliers (data acquisition & control), 230 V/50Hz	
		Electric transformer (DC drive control) 230 V/50Hz	

CS1 equipment:	BP-3		Bench-scale system	
Owner:	UNIPA	Pilot-scale System		
			☑ Large pilot/Demo System	
		Frame 1 height	2,045 mm (EDBM)	
	-	Frame 1 length	800 mm (EDBM)	
		Frame 1 width	1,100 mm (EDBM)	
		Frame 2 height	2,120 mm (Auxiliaries)	
Frame 1 - E	EDBM	Frame 2 length	3,000 mm (Auxiliaries)	
		Frame 2 width	1,300 mm (Auxiliaries)	
		Power consumptio n	5 kW (Pump motors) 10 kW (DC drive) 0.4 kW (Power supplies) 0.1 kW (Electric transformer) 1.4 kW (Air conditioner) 0.1 kW (Fan) Total: 17 kW	
Frame 2 - Au	xiliaries	Construction / materials	Two aluminium frames are included. The first frame is comprised of an EDBM module (Fumatech) with 40 repeating units and pressure gauges (Varisco); the second frame is comprised of all necessary auxiliaries, including four regenerative turbine pumps (Teorema), four filters (Atlas), three electro-valves (FIP), all required sensors (Krohne), and data acquisition systems (National Instrument). The DC drive (Giussani) is positioned on a stainless steel support.	
Other		Container	20" container (6.1m x 2.5m x2.6 m) (Length x Width x Height)	

Other

The pilot requires single- and 3- phase electric power supplies. Demi water is required for the acid and base tanks, and for the preparation of the synthetic brine solutions. The preparation of the Electrode Rinse Solution is required every 20-30 working days. No need for compressed air. Although the system is automated, the presence of an operator is required for the opening and closing of the manual valves at the beginning and end of the test and for sampling operations.

			_	
CS1 equipment:	BP-3	[Bench-scale system
Owner:	UNIPA	I		Pilot-scale System
		[V	Large pilot/Demo System
		3D Sketch		
Possible operationa	•			
	•	in poor performance;		
	ode compartmei	nts may cause a reduct	τιοι	n in the electrical current flowing in
closed), damage Clogged filters ca	to the pumps an an cause bursts o	nd internal leakage in the pipe or damage the pipe of	he to t	the pumps;
internal leakage				solutions or possible flooding and

- Flow rate transmitter not working/out of service may cause overpressures, internal leakage in the stack, pumps shutdown;
- Level switches not properly working may cause overflow of solutions from tanks, damage to pumps, and internal leakage.
- Stack leakages during functioning may expose operators to medium-high voltage (max 70V DC), for this reason a transparent wall divides the container area where the DC drive and EDBM stack are positioned from the rest.

Contact Persons

Dr. Andrea Culcasi (andrea.culcasi@unipa.it),

Mr. Calogero Cassaro (<u>calogero.cassaro01@unipa.it</u>),

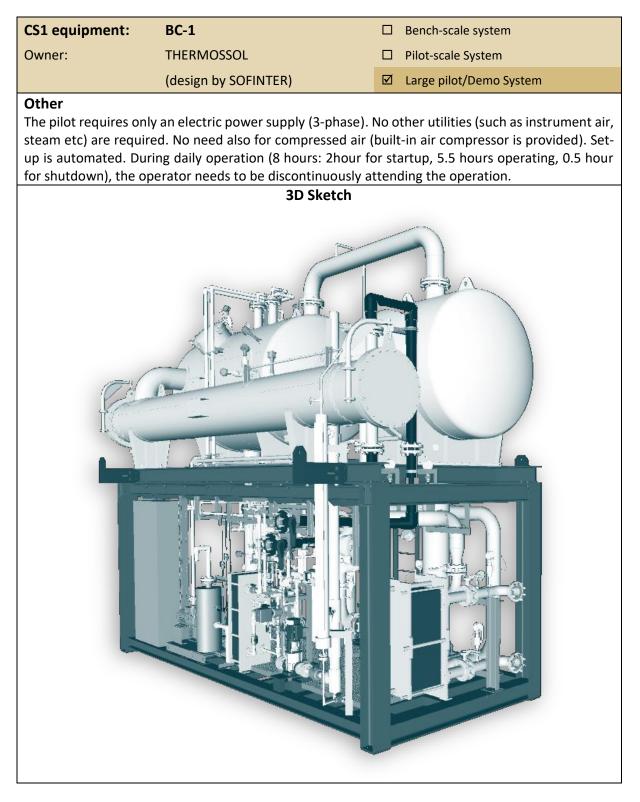
Mr. Giovanni Virruso (giovanni.virruso01@unipa.it),

Prof. Andrea Cipollina (andrea.cipollina@unipa.it),

Prof. Giorgio Micale (giorgiod.maria.micale@unipa.it)

No	Size	Туре	Description
4	DN20	PVC Reinforced Hose Pipe	From container 3 EFC effluent tank to container
			4 feed tank of EDBM (0.1m3/h)
12d(1)	DN20	PVC Reinforced Hose Pipe	From container 4 to drain
12d(2)	DN20	PVC Reinforced Hose Pipe	From container 4 to drain
7b	DN20	PVC Reinforced Hose Pipe	From container 4 saline solution tank to feed
			tank MED or container 5 (0.2m3/h)
5a	DN20	PVC Reinforced Hose Pipe	From container 4 acid tank outlet to container 2
			acid storage tank or SWRO civil plant (0.2 m3/h)
6a	DN20	PVC Reinforced Hose Pipe	From container 4 base tank outlet container to
			container 2 base storage tank or SWRO civil
			plant (0.2m3/h)
11d	DN20	PVC Reinforced Hose Pipe	From RO permeate (SWRO civil plant) to
			container 4 (max 4m3/day)
22(1)	DN20	PVC Reinforced Hose Pipe	From container 4 to neutralization tank
22(2)	DN20	PVC Reinforced Hose Pipe	From container 4 to neutralization tank

Table 4-5: Connections of the EDBM system (Code: CS1/BP-3) to other process units


water

4.4. CS1/BC-1: Multiple Effect Distillation demo system (MED-1)

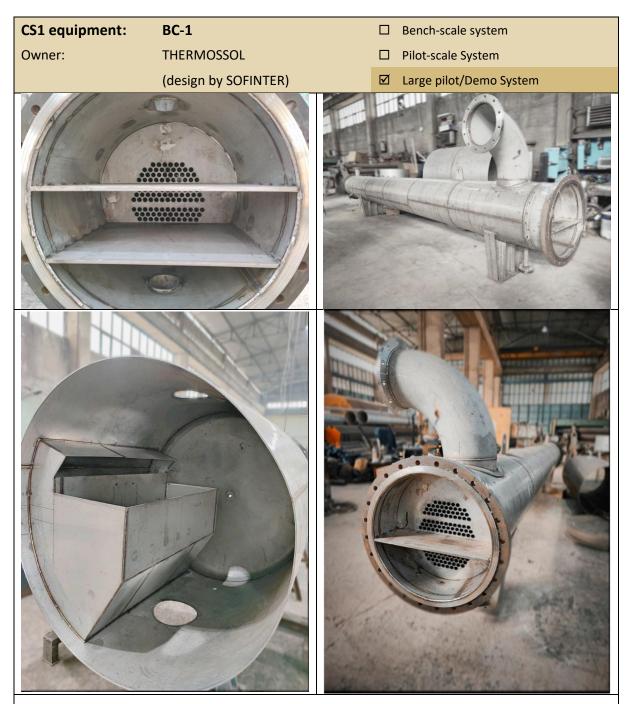

CS1 equipment: BC	-1		Bench-scale system	
Owner: TH	ERMOSSOL		Pilot-scale System	
(de	sign by SOFINTER)		☑ Large pilot/Demo System	
	Operati	ng pressure	Atmospheric pressure	
	Workin	g temperature	0°C to 45 °C	
	Applied	voltage	400V	
Capacity 1700 l/h	Inlet ch	emicals	Additive: antifoam solution	
1700 l/h	Outlet o	chemicals	N/A	
	Refrige	ration fluid	N/A	
			Flash water circulation pump: 3-phase, 400 V/50Hz	
			Brine extraction pump: 3-phase, 400	
Main product Fresh distilled water			V/50Hz Distillate extraction pump: 3-phase, 400 V/50Hz	
	Power supply		Vacuum pump: 3-phase, 400 V/50Hz	
			Additive dosing pump: 1-phase, 230 V/50Hz	
By-products NaCl concentrate stream			Control system 230 V/50 Hz	
		Frame height	5500 mm (after assembly)	
		Frame length	6000x2500 mm (footprint)	
		Power consumption	 8.9 kW (flash water circulation pump) 2.7 kW (brine extraction pump) 0.6 kW (distillate extraction pump) 3.6 kW (vacuum pump) 0.2 kW (dosing system) 0.7 kW (control system) Total: 16.7 kW 	
		Construction / materials	Evaporator: super duplex ss (SAF 2507) with Titanium heat exchange tubes. Flash drum and distillate condenser : stainless steel (316L). Two pre-coolers.	
2400		Skids	No. 2 skids simil size 20" container (6m x 2.5m x2.5 m) (Length x Width x Height) shop pre-assembled	

Table 4-6: Summary of MED demo system used in CS1 (code: CS1/BC-1)

Safety

Possible salty solution leakages in case tubes or pumps break.

Contact Persons

Thermossol : Dr. Christina Xenogianni (<u>thermossol@yahoo.gr</u>) Sofinter : Dr. Alessandro Trezzi (<u>alessandro.trezzi@swsonweb.com</u>)

Table 4-7: Connections of the MED-1 system (Code: CS1/BC-1) to other process units

No	Size	Туре	Description
1	DN25	PVC-C Reinforced Pipe	Feed water inlet
2	DN25	PVC-C Reinforced Pipe	Brine outlet
3	DN25	PVC-C Reinforced Pipe	Distilled water outlet
4	DN100	316L stainless steel	Hot water inlet
5	DN100	316L stainless steel	Hot water inlet
6	DN100	PVC-U Reinforced Pipe	Cooling water inlet
7	DN100	PVC-U Reinforced Pipe	Cooling water outlet
8	DN20	PVC Reinforced Hose Pipe	to drain

4.5. CS1/BC-2: Multiple Effect Distillation pilot system (MED-2)

CS1 equipment:	BC-1			Bench-scale system	
Owner:	NTUA & SEALEAU			☑ Pilot-scale System	
				Large pilot/Demo System	
				0.15 bar(a) – 1 st effect	
		Operating	g pressure	0.10 bar(a) – 2 nd effect	
Capacity		Working		55 °C– 1 st effect	
2 m³/day		temperat	ure	45 °C− 2 nd effect	
		Power supply		Three phase	
			PP.)	Single phase, 230 V/50Hz	
Height				2690mm	
			Length	5,910 mm	
			Width	5,910 mm 2,345 mm	
				Inside the container 4 polypropylene tanks with a capacity 300 L each (2 feed brine containers, 1 distillate water container and 1 concentrated) have been installed. Moreover, a heat exchanger have been installed in order to improve the efficiency of the system.	

Table 4-8: Summary of MED pilot system used in CS1 (code: CS1/BC-2)

Construction

The evaporator consists of two effects, each operating at different pressure. Each effect has cylindrical shape, placed vertically on the supporting scaffold.

Other

The pilot-scale evaporator can run either with the use of low-grade heat (~90 °C) or with electricity, since it is equipped with electrical heaters (3.7 kW). With reference to electric supply, it needs both single phase and three-phase (for the vacuum pump) power supply. Control of the system is performed via a PC-based SCADA interface.

Contact Person

Prof. Maria Loizidou (mloizidou@sealeau.com)

water

minina

water

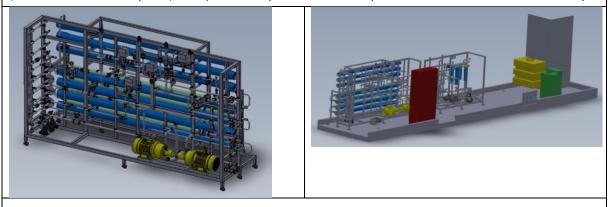

4.6. CS1/BC-3: High pressure nanofiltration (HPNF)

Table 4-9: Summary of HPNF demo system used in CS1 (code: CS1/BC-3)

CS1 equipment: BC-2	🗆 Be	nch-scale system	
Owner: Lenntech	🗆 Pil	Pilot-scale System	
	🗹 La	rge pilot/Demo System	
Capacity ~1,700 L/h feed – 200L/h brine 18-20%	Operating pressure	50-70 bars	
 Product streams HPNF permeate: Purified stream, drinking water quality NF concentrate:Concentrate 	Working temperature	15°C to 40 °C	
• NF concentrate: Concentrate stream rich in sodium chloride up to 20% concentration	Power supply	Main power supply: 3-phase, 400 V/50Hz	
	HPNF skid height	Unknown at this stage	
	HPNF skid length	Unknown at this stage	
	Power consumption	Estimated 45 kW installed power	
(under construction)	Construction / materials	Low pressure parts in PVC High pressure parts in SS316 Skid in SS304 (to be confirmed)	
	Container	40ft HC container (12m x 2.35m x2.69 m) (Length x Width x Height) Thermal and acoustic insulation (50 mm EPS with aluminum 0.4 plates)	

Other

The pilot requires an electric power supply (3-phase, 400 V/50Hz,) and clean non-chlorinated water (demi water from RO plant). The pilot is fully automatic. The pilot should run at least 8 hours/day.

Safety

Detailed safety instructions will be provided in the IOM manual of the system

Contact Persons

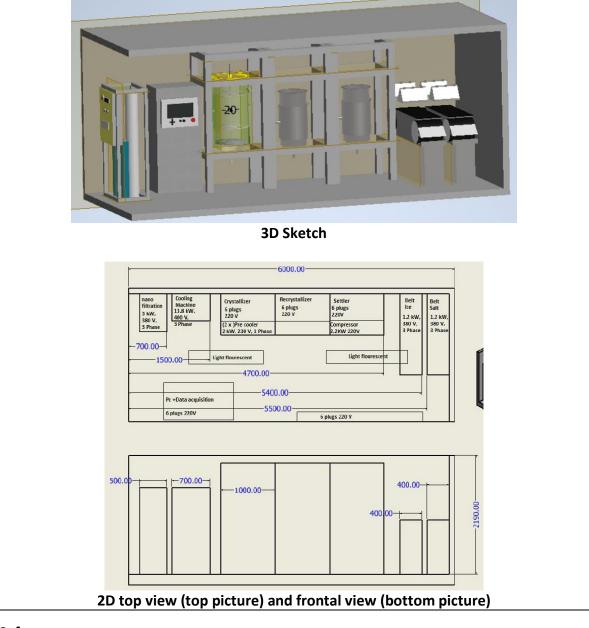
Dionysia Diamantidou (<u>dionysia@lenntech.com</u>), Loic AUBLE (<u>loic@lenntech.com</u>)

Table 4-10: Connections of High Pressure Naniflitration (Code: CS1/BC-3) to other process units

No	Size	Туре	Description
1	DN25	Flange (Feed inlet)	From Container 1 (NF pilot)
2	DN25	Flange (Dechlorinated Water Inlet)	From RO permeate (Desalination Plant)
3	DN25	Flange (Brine Outlet)	Brine to further treatments
4	DN40	Flange (Cooling water inlet)	From well
5	DN32	Flange (Permeate and Drain Outlet)	To drain

4.7. CS1/BCr-1: Eutectic Freeze Crystallization (EFC)

Table 4-11: Summary of the EFC demo system used in CS1 (code: CS1/BCr-1)


CS1 equipment: BCr-	-1	Bench-scale system		
Owner: TUDELFT		Pilot-scale System		
	1		☑ Large pilot/Demo System	
	Operating pressure		Atmospheric pressure	
Capacity 100 – 200 l/h	Working temperature		-40 °C to 25 °C	
	Applied voltage		N/A	
	Inlet chemicals		N/A	
	Outlet chemicals		N/A	
	Refrigeration fluid		Silicone oil (Lauda: Kryo 51)	
			Cooling Machine: 3-phase, 400 V/50Hz	
Main product			Crystallizer: single phase (6 plugs), 230 V/50 Hz	
Sodium sulfate (Na ₂ SO ₄), Ice			2xPre-cooler: single phase, 230 V/50 Hz	
	Power su	pply	Re-crystallizer: single phase, 230 V/50 Hz	
			Settler: single phase, 230 V/50 Hz	
By-products NaCl concentrate stream			2xBelt filer: 3-phase, 400 V/50Hz	
			Compressor: single phase, 230 V/50 Hz	
		Frame height	2,050 mm (reactor)	
The second second		Frame length	1,000 mm (reactor)	
Por cor n Cor n		Power consumptio n	 0.24 kW (Crystallizer: scraper & stirring motors) 0.12 kW (Re-crystallizer: stirring motor) 0.12 kW (Settler: stirring motor) 13.8 kW (Cooling machine) 2.2 kW (pre-coolers) 2.4 kW (Belt filters) 2.2 kW (compressor) Total: 21.08 kW (16.2 kW, 3-phase) 	
		Constructio n / materials	Stainless steel (316) reactor mounted in aluminium frame. Separate cooling unit (Lauda) with secondary cooling fluid. Two pre-coolers, one re-crystallizer, two belt filters and one settler.	
		Container	20'' container (6m x 2.5m x2.5 m) (Length x Width x Height)	

CS1 equipment:	BCr-1	Bench-scale system
Owner:	TUDELFT	Pilot-scale System
		☑ Large pilot/Demo System
		Thermal and acoustic insulation (foam) and wooden wall frame (for thermal insulation and fixing/mounting purposes).

Other

The pilot requires only an electric power supply (both single and 3-phase). No other utilities (such as chemicals, steam etc) are required. No need also for compressed air (built-in air compressor is provided). Set-up is not / cannot be automated. During daily operation (8 hours: 1hour for startup, 6hours operating, 1 hour for shutdown), the operator needs to be continuously working on the set-up.

Safety

3 phase equipment. Possible salty solution leakages in case tubes or pumps break.

CS1 equipment:	BCr-1		Bench-scale system	
Owner:	TUDELFT		Pilot-scale System	
		V	Large pilot/Demo System	
Contact Persons				
Dr. Dimitris Xevgenos (<u>d.xevgenos@tudelft.nl</u>),				
Dr. Marcos Rodriguez (<u>m.rodriguezpascual@tudelft.nl</u>)				

Table 4-12: Connections of the EFC (Code: CS1/BCr-1) with other process units

No	Size	Туре	Description		
1	DN20	PVC Reinforced Hose Pipe	From Container 2 to feed NF (pre-concentration step) tank (0.3m3/h)		
2	DN40	PVC Reinforced Hose Pipe	To Container 4 to feed tank of EDBM (0.1m3/h)		
3	DN20	PVC Reinforced Hose Pipe	to drain		
4	DN20	PVC Reinforced Hose Pipe	From RO permeate (Desalination Plant) (0.3 m ³ /h)		
5	DN20	PVC Reinforced Hose Pipe	Water reservoir		

water

4.8. CS1/BCr-2: Laser induced cavitation crystallization (LICC)

CS1 equipment: B	Cr-2		Bench-scale system		
Owner: T	DELFT		Pilot-scale System		
			□ Large pilot/Demo System		
	Operating	g pressure	0.5-0.8Mpa		
	Working	temperature	40 °C to 80 °C		
	Applied v	oltage	N/A		
Capacity 100 – 200 l/h	Inlet cher	nicals	N/A		
200 200 911	Outlet ch	emicals	N/A		
			Steam generator: 3-phase, 400 V/50Hz		
			Feed pump: 3-phase, 400 V/50 Hz		
Main products			1-effect forced pump: 3-phase, 400 V/50 Hz		
			2-effect forced pump: 3-phase, 400 V/50 Hz		
NaCl	Power su	pply	Discharge pump: 3-phase, 400 V/50 Hz		
			Condensate pump: 3-phase, 400 V/50 Hz		
By products			Water ring vacuum pump: 3-phase, 400 V/50 Hz		
N/A			Pulsed Laser 400W : single phase 230 V/50 Hz		
			Water pump: 3-phase, 400 V/50 Hz		
		Frame height	2,050 mm (reactor)		
		Frame length	5,000 mm (reactor)		
		Power consumption	48 kW (Steam Generator) 0.37 kW (Feed pump) 1.5 kW (1-effect force pump) 1.5 kW (2-effect force pump) 2.2 kW (Discharge pump) 2.2 kW (Condensate pump) 2.35 kW (Water ring vacuum pump) 0.4 kW(Pulsed Laser) 1.5 kW(Water pump) Total: 60.02 kW		
		Construction / materials	100L per hour double-effect forced circulation crystallization evaporator, 316 material. Steam generator. Cold water tower. Feeding tank 100L, 316 material. 1st- effect separator, 316 material. 2nd-effect		

Table 4-13: Summary of the LICC pilot system used in CS1 (code: CS1/BCr-2)

CS1 equipment:	BCr-2		Bench-scale system			
Owner:	TUDELFT		Pilot-scale System			
		Large pilot/Demo System				
			heater, 316 material. 2nd-effect separator, 316 material. Condenser, condensate water tank, 304			
			material. Electric control cabinet			
			20" container (6m x 2.5m x2.5 m)			
			(Length x Width x Height)			
		Container	Thermal and acoustic insulation (foam) and wooden wall frame (for thermal insulation and fixing/mounting purposes).			

Other

The pilot requires only an electric power supply (both single and 3-phase). No other utilities (such as chemicals, steam etc) are required. No need also for compressed air . Set-up is automated although requires some supervision.

Safety

The Thermal Crystallizer operates under high pressure. Steam is created and can achieve high temperatures if not properly handle.

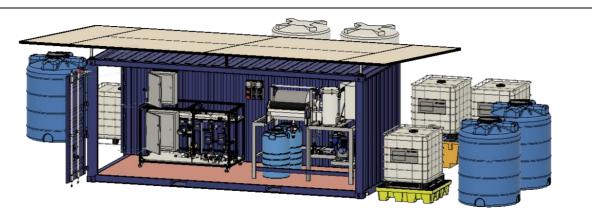
Contact Persons

Dr. Dimitris Xevgenos (<u>d.xevgenos@tudelft.nl</u>),

Dr. Marcos Rodriguez (m.rodriguezpascual@tudelft.nl)

4.9. CS1/BCr-3: Multiple Feed Plug Flow Reactor (MF-PFR)

Table 4-14: Summary of the multiple feed plug flow reactor demo system used in CS1 (code: CS1/BCr-3)


CS1 equipment: BCr-	3	Bench-scale system		
Owner: UNIPA		Pilot-scale System		
			☑ Large pilot/Demo System	
	Operating pressure		0.5-2 Bar(a)	
Capacity	Working temperature		15°C to 40°C (ambient temperature)	
150 l/h	NaOH concentration		0.5-2 [mol/L], nominal [1 mol/L]	
	Inlet chemicals		NaOH-water solution HCl- water solution	
	Outlet ch	emicals	No chemicals produced, apart from the main products	
Main product Magnesium Hydroxide Calcium Hydroxide	Refrigeration fluid		Cooling water for the vacuum pump (in the Drum Filter), about 0.5-1.5 m ³ /h or (Max)30 kW _{th}	
Brine without bivalent cations			2xGear Pump: 24 VDC 4x Centrifugal pump: Mono phase, 230 VAC/50 Hz 4xMembrane pump: 12 VDC	
	Power supply 3-phases (400V) power Peak current 63A Max Power ~ 20kW Nominal Power (total) ~ 10 kW Further details for each single unit>		Drum Filter: 3-Phase/50Hz	
			Air conditioner: single phase, 230 V/50 Hz	
			Fan: single phase, 230 V/50 Hz	
By-products			2x 24 VDC Power suppliers (data acquisition & control), 230 V/50Hz	
not applicable			24 VDC Power supply (Gear Pumps and fluxmeters and conductivity meter), 230 V/50Hz	
			4X 12VDC Power Suppliers (Membrane Valves), 230 VAC/50Hz	
Frame 1 – MF-PFR		Frame 1 height	2,070 mm (MF-PFR)	
		Frame 1 length	2,000 mm (MF-PFR)	
		Frame 1 width	1,000 mm (MF-PFR)	
		Frame 2 height	2,000 mm (DRUM-FILTER)	
		Frame 2 length	2,200 mm (DRUM-FILTER)	
		Frame 2 width	1,500 mm (DRUM-FILTER)	

CS1 equipment: BCr-3		Bench-scale system	
Owner: UNIPA	Pilot-scale System		
		☑ Large pilot/Demo System	
	Power consumption	2.3 (Pump motors) 1.4 kW (Air conditioner) 7 kW (Drum Filter)	
		Total: 10.7 kW, 3-phase, 400 Vac/50Hz	
Frame 2 - Drum Filter	Construction / materials	The aluminium frame is composed of crystallizer (a tube in which precipitatio occurs) and all necessary auxiliarie including two gear pumps (Teorema), on centrifugal pump (Schmitt), all necessar sensors (Krohne), and data acquisitio systems (National Instrument).	
	Container	20" container (6.1m x 2.5m x2.6 m) (Length x Width x Height)	

Other

The pilot requires single- and 3- phase electric power supplies. No need for compressed air. Although the system can be automated, the presence of an operator is required for the opening and closing of the manual valves at the beginning and end of the test and for sampling operations.

3D Sketch

Safety

- Manual ball valves closed or not functioning may cause bursts on the pipe (if the valve is closed), damage to the pumps;
- Flow rate transmitter not working/out of service may cause overpressures, pumps shutdown;
- Level switches not properly working may cause overflow of chemical solution/brine from tanks, damage to pumps,
- Missing cooling water into the vacuum pump causing damage/failure of vacuum pump;

Contact Persons

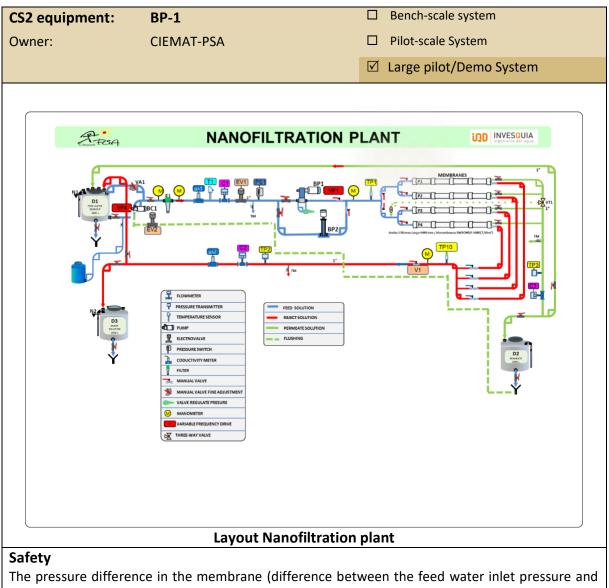
Dr. Fabrizio Vassallo (<u>fabrizio.vassallo@unipa.it</u>), Mr. Carmelo Morgante (<u>carmelo.morgante01@unipa.it</u>), Prof. Andrea Cipollina (<u>andrea.cipollina@unipa.it</u>), Prof. Giorgio Micale (<u>giorgiod.maria.micale@unipa.it</u>).

No	Size	Туре	Description	
4	DN20	PVC Reinforced Hose Pipe	From container 3 EFC effluent tank to container 4 feed tank of EDBM (0.1m3/h)	
12d(1)	DN20	PVC Reinforced Hose Pipe	From container 4 to drain	
12d(2)	DN20	PVC Reinforced Hose Pipe	From container 4 to drain	
7b	DN20	PVC Reinforced Hose Pipe	From container 4 saline solution tank to feed tank MED or container 5 (0.2m3/h)	
5a	DN20	PVC Reinforced Hose Pipe	From container 4 acid tank outlet to container 2 acid storage tank or SWRO civil plant (0.2 m3/h)	
6a	DN20	PVC Reinforced Hose Pipe	From container 4 base tank outlet container to container 2 base storage tank or SWRO civil plant (0.2m3/h)	
11d	DN20	PVC Reinforced Hose Pipe	From RO permeate (SWRO civil plant) to container 4 (max 4m3/day)	
22(1)	DN20	PVC Reinforced Hose Pipe	From container 4 to neutralization tank	
22(2)	DN20	PVC Reinforced Hose Pipe	From container 4 to neutralization tank	

Table 4-15: Connections of the MF-PFR (Code: CS1/BCr-3) with other process units

5. Demo system used in CS2

5.1. CS2/BP-1: Nanofiltration-3


Table 5-1: Summary of nanofiltration demo system used in CS2 (code: CS2/BP-1)

CS2 equipment:	BP-1		Bench-scale system	
Owner: CIEMAT-PSA		Pilot-scale System		
			Large pilot/Demo System	
Capacity	Operating pressure	4-13 bar (the limit value is 14 bar)		
3 m³/h	Working temperature	Ambie	nt	
	Applied voltage	N/A		
	Inlet chemicals	N/A		
	Outlet chemicals	N/A		
	Refrigeration fluid	N/A		
	Power supply	3 phase, 400 V/50 Hz		
	Number of pressure vesse	ls	4	
Main product Permeate	Membrane size		4"	
By-products Brine reject	Maximum number membranes in vessel	of	4	
	Power	0.50 kV	V (BC1 pump)	
	consumption	3 kW (BP1 pump)		
0.0	Construction /			
	materials	vessels.		

Other

The pilot requires only an electric power supply (3-phase). No other utilities (such as chemicals, steam etc) are required. No need also for compressed air (built-in air compressor is provided). Setup is not / cannot be automated. During daily operation (5 hours: 30 min for initial flushing, 5 hours operating, 30 min for final flushing), the operator needs to be continuously working on the pilot plant. The desposits have only visual levels (no level sensors)

The pressure difference in the membrane (difference between the feed water inlet pressure and the reject solution pressure) should not be higher than 2.1 bar because of possible deformation in the porous of the membranes.

Contact Persons

Dr. Guillermo Zaragoza (guillermo.zaragoza@psa.es),

Dr. Patricia Palenzuela (<u>patricia.palenzuela@psa.es</u>)

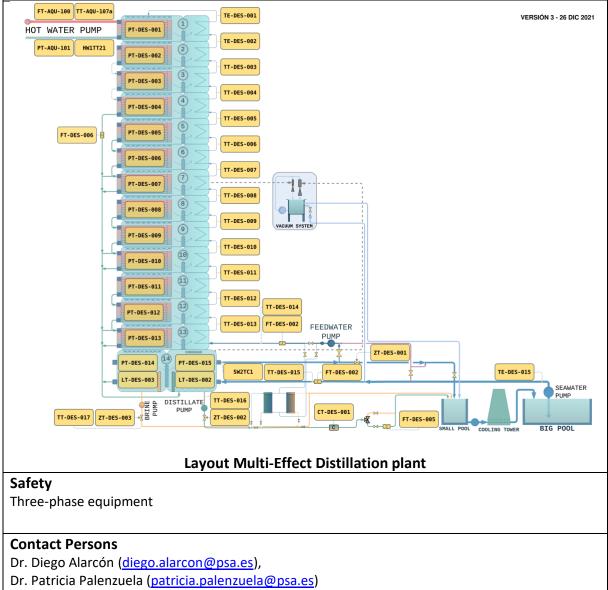
Label	Description
D1	Feed water desposit, 2000 L
D2	Permeate deposit, 2000 L
D3	Reject solution desposit, 2000 L
BC1	Centrifugal pump, Lowara 3HM06S05T 3 bar/1400 L/h, 0.5 kW
BP2	Low Pressure Pump, LOWARA SV F 3SV31F030T/D, 3 KW, maximum flow rate 30 m3/h, operating pressure 16-25 bar
F1	Filter, Centripur, 5 microns, Model NW25
μS1 – 2	Conductivity meter, Prominent, precision 0.5% of the measured limit value
C1-C3	Flow meter burket, measurement with conductivity over 20 μ S/cm and less than 20 mS/cm, with range of error ± 0,5%.
EV1	Electrovalve, RSG, 24V AC, 0.3-6 bar.
EV2	Electrovalve, J4C Model S20, 24-240 V AC, -20-70 ºC
PS1	Pressure switch, Danfoss, range 0.5-1.6 bar, Error ± 0.1 bar.
T1	Temperature sensor, IFM error ± 2 ºC.
TP1-10	Pressure transmitter, Burket, range 0 bar - 100 bar (TP1) and 0 bar - 20 bar (TP2, TP3 y TP10).
М	Manometer, Error ± 0.2 bar.
P1-4	Membranes, FilmTecTM NF270 (P1, P2, P3 y P4) with maximum rejection of 97% (brackish water), and a maximum limit pressure up to 15 bar.

Table 5-2: Sensors and components of nanofiltration demo used in CS2

5.2. CS2/BC-1: Multiple Effect Distillation unit (MED-3)

Table 5-3: Summary of the MED demo system used in CS2 (code: CS2/BC-1)

Owner: CIEMAT-PSA □ Pilot-scale System Capacity Feedwater flow 8 m³/h 72 m³/day Feedwater flow 8 m³/h Distillate production 3 m³/h Seawater flow at condenser: 9 m³/h @ 10 °C 8 m³/h @ 25 °C 20 m³/h Product output salinity < 50 ppm TDS Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Top brine temperature 70 °C (312 mbar abs) Distillate S °C (56 mbar abs) Brine reject Frame height 7.5 m Frame depth 2.4 m Frame width 1 m Thermal power 200 kW (Performance ratio = 9.6) Working fluid: hot water inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power 1.5 kW (Bitille pump) 1.5 kW (Bitille pump) 2.2 kW (Feedwater pump) 2.4 kW (Brine pump) 2.2 kW (Feedwater pump)		Bench-scale system		1	CS2 equipment: BC-	CS2 equip	
Capacity Feedwater flow 8 m³/h 72 m³/day Brine reject 5 m³/h Brine reject 5 m³/h Distillate production 3 m³/h Seawater flow at condenser: 8 m³/h @ 10 °C 8 m³/h @ 25 °C 20 m³/h Product output salinity < 50 ppm TDS Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Top brine temperature 70 °C (312 mbar abs) Distillate Condenser temperature 35 °C (56 mbar abs) By-products Frame height 7.5 m Brine reject Frame height 2.4 m Frame width 1 m Thermal power 200 kW (Performance ratio = 9.6) Working fluid: hot water 200 kW (Reformance ratio = 9.6) Working fluid: hot water 1.5 kW (Distillate pump) Power 1.5 kW (Distillate pump)		Pilot-scale System	CIEMAT-PSA		Owner: CIEN	Owner:	
72 m³/day Brine reject 5 m³/h Distillate production 3 m³/h Seawater flow at condenser: @ 10 °C 8 m³/h @ 25 °C 20 m³/h Product output salinity < 50 ppm TDS Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Distillate Top brine temperature By-products Brine reject Condenser temperature S5 °C (56 mbar abs) 35 °C (56 mbar abs) Frame height 7.5 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump) 1.5 kW (Brine pump)	☑ Large pilot/Demo System						
Brine reject 5 m²/n Distillate production 3 m³/h Seawater flow at condenser: @ 10 °C 8 m³/h @ 25 °C 20 m³/h Product output salinity < 50 ppm TDS Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Distillate Top brine temperature 70 °C (312 mbar abs) By-products Brine reject Condenser temperature 35 °C (56 mbar abs) Frame height 7.5 m Frame depth 2.4 m Frame depth 2.00 kW (Performance ratio = 9.6) Working fluid: hot water Inlet/outlet hot water? power consumption 1.5 kW (Distillate pump) Power consumption 1.5 kW (Distillate pump)		8 m³/h	er flow	Feedwate	Capacity Feedwate		
Seawater flow at condenser: @ 10 °C @ 25 °C 8 m³/h 20 m³/h Product output salinity < 50 ppm TDS Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Distillate Top brine temperature perature 70 °C (312 mbar abs) By-products Brine reject Condenser temperature Frame height 35 °C (56 mbar abs) Frame height 2.4 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump)		5 m³/h	Brine reject		72 m³/day		
condenser: @ 10 °C 8 m³/h @ 25 °C 20 m³/h Product output salinity < 50 ppm TDS Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Top brine temperature 70 °C (312 mbar abs) Distillate Condenser temperature 35 °C (56 mbar abs) By-products Frame height 7.5 m Brine reject Frame depth 2.4 m Frame depth 2.4 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Norking fluid: hot water inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power 1.5 kW (Distillate pump) 1.5 kW (Brine pump)		3 m³/h	Seawater flow at				
@ 10 °C 8 m³/h @ 25 °C 20 m³/h Product output salinity < 50 ppm TDS Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Top brine temperature 70 °C (312 mbar abs) Distillate Condenser temperature 35 °C (56 mbar abs) By-products Frame height 7.5 m Frame depth 2.4 m Frame depth Frame width 1 m Thermal power consumption Working fluid: hot water rinlet/outlet hot water; 75/71 °C Hot water flow rate; 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump)							
@ 25 °C 20 m³/h Product output salinity < 50 ppm TDS Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Top brine temperature Distillate Condenser temperature By-products Condenser temperature Brine reject Frame height Frame depth 2.4 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump)		8 m ³ /h	C 1.				
Number of stages 14 effects (13 preheaters + condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Distillate Top brine temperature 70 °C (312 mbar abs) By-products Brine reject Condenser temperature 35 °C (56 mbar abs) Frame height 7.5 m Frame depth 2.4 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump) 1.5 kW (Brine pump)		-		-			
condenser) Feedwater configuration Forward-feed vertical stack Vaccuum system Hydroejectors (seawater @3 bar) Main product Distillate Top brine temperature 70 °C (312 mbar abs) By-products Brine reject Condenser temperature 35 °C (56 mbar abs) Frame height 7.5 m Frame depth 2.4 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump)		< 50 ppm TDS	output salinity	Product o			
Feedwater configurationForward-feed vertical stackVaccuum systemHydroejectors (seawater @3 bar)Main product DistillateTop brine temperature70 °C (312 mbar abs)By-products Brine rejectCondenser temperature35 °C (56 mbar abs)Frame height7.5 mFrame depth2.4 mFrame width1 mThermal power consumption200 kW (Performance ratio = 9.6) Working fluid: hot water Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/sPower consumption1.5 kW (Distillate pump) 1.5 kW (Brine pump)	end	14 effects (13 preheaters + e	of stages	Number o			
Note of brind brind to		,					
Main product DistillateTop brine temperature temperature70 °C (312 mbar abs)By-products Brine rejectCondenser temperature S °C (56 mbar abs)35 °C (56 mbar abs)Frame height7.5 mFrame depth2.4 mFrame depth1 mThermal power consumption200 kW (Performance ratio = 9.6) Working fluid: hot water Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/sPower consumption1.5 kW (Distillate pump) 1.5 kW (Brine pump)	Forward-feed vertical stack		Feedwater configuration				
Distillate Condenser temperature 35 °C (56 mbar abs) Brine reject Frame height 7.5 m Frame depth 2.4 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water linlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump)	Hydroejectors (seawater @3 bar)		n system	Vaccuum			
Brine reject Frame height 7.5 m Frame depth 2.4 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water inlet/outlet hot water 9.6) Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump) 1.5 kW (Brine pump)		70 °C (312 mbar abs)	e temperature	•			
Frame depth 2.4 m Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water Inlet/outlet hot water Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump) 1.5 kW (Brine pump)		35 °C (56 mbar abs)	er temperature	, ,			
Frame width 1 m Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water Norking fluid: hot water Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump) 1.5 kW (Brine pump)		7.5 m	Frame height				
Thermal power consumption 200 kW (Performance ratio = 9.6) Working fluid: hot water Working fluid: hot water Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump) 1.5 kW (Brine pump)		2.4 m	Frame depth				
power working fluid: hot water consumption Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power 1.5 kW (Distillate pump) consumption 1.5 kW (Brine pump)		1 m	Frame width	TR/			
consumption Inlet/outlet hot water: 75/71 °C Hot water flow rate: 12 kg/s Power consumption 1.5 kW (Distillate pump) 1.5 kW (Brine pump)		200 kW (Performance ratio = 9.6)	Thermal				
Hot water flow rate: 12 kg/s Power 1.5 kW (Distillate pump) consumption 1.5 kW (Brine pump)		Working fluid: hot water	power				
Power 1.5 kW (Distillate pump) consumption 1.5 kW (Brine pump)			consumption				
consumption 1.5 kW (Brine pump)					THE PARTY FOR THE STREET		
2.2 kW (Feedwater pump)			consumption				
5.5 kW (Hydroejector pump)							
0.1 kW (Antiscalant dosage pump)		0.1 kW (Antiscalant dosage pump)					
5 kW (Feedwater pool to MED pump)		5 kW (Feedwater pool to MED pump)					
		3 kW (Distillate+Brine+Cooling rejecti					
pool to cooling tower pump)				3			



CS2 equipment:	BC-1		Bench-scale system
Owner:	CIEMAT-PSA		Pilot-scale System
		\checkmark	Large pilot/Demo System

Other

The MED plant is composed by 14 cells or effects at successively decreasing temperatures and pressures from effect(1) to effect(14). The seawater is preheated from stage to stage in the 13 preheaters. From effect(1), the seawater passes on from one stage to another by gravity before being extracted from effect(14) by the brine pump. Part of the seawater used to cool the condenser is rejected and the rest is used for the feedwater required to spray the effect(1) tube bundle. The first effect is powered by hot water coming from a static flat plate solar field (606 m²) with a 40-m³ thermal storage system (2-tanks)

Water in Cell(1) is evaporated at 70°C/ 0.31 bar. The vapor produced in Cell(14) at 35° C/0.05 bar is condensed in a final condenser cooled by seawater. The product water is then extracted from the condenser by means of the distilled water pump.

Table 5-4: Sensors and components of the MED demo used in CS2

Label	Description
FT-AQU-100	Inlet hot water flow from solar field
TT-AQU-107a	Inlet hot water temperature from solar field
HW1TT21	Outlet hot water temperature
PT-AQU-101	Outlet hot water pressure
PT-DES-0XX	Absolute pressure inside effect XX
TT-DES-0XX TE-DES-0XX	Outlet temperature from preheater XXd
LT-DES-003	Brine level inside last effect
LT-DES-002	Distillate level inside final condenser
SWTC1	Final condensder outlet temperature
TT-DES-015	Final condenser inlet temperature
FT-DES-002	Cooling water flow in at final condenser
TT-DES-017	Brine temperature
TT-DES-016	Distillate temperature
TE-DES-015	Raw seawater temperature
FT-DES-005	Distillate flow
CT-DES-001	Distillate conductivity

6. Concluding remarks

6.1. Overview of the demo system components

The process units applied for brine processing have been grouped in the following three (3) categories:

- Brine Purification (BP)
- Brine Concentration (BC)
- Brine CRystallization (BCr)

Following this coding, we have reported the different characteristics of the system components by case study. An overview of all the system components is provided in <u>Table 6-1</u>.

6.2. Installation, start-up and next steps

The components from both demo systems, as described in <u>Sections 4</u> and <u>5</u> (see also table below) have been successfully commissioned at the premises of the individual technology suppliers.

With reference to the installation of the demo systems, the complete demo has been successfully installed for Case Study 2 in Almeria, Spain on 19 January 2022. For Case Study 1 it is expected that the full demo will be installed at the site of SELIS in Lampedusa island in the first two weeks of March 2022.

With the complete demo systems installed at the sites for both case studies, Task 3.3 entitled "Operation and optimization of the large-scale demonstration plants" can start on time, that is in March 2022 (M19), running until March 2024 (M42).

Table 6-1: Overview of the demo systems used in CS1 & CS2, and their main componets/process units

Technology Groups	Code	Modules	Owner	Description
	CS1/BP-1	Nanofiltration – 1	LENNTECH	<u>Table 4-1</u>
Brine purification /	CS1/BP-2	Nanofiltration - 2	TUDELFT	Table 4-3
Ion Separation	CS1/BP-3	Electrodialysis (EDB – EDBP)	UNIPA	Table 4-4
	CS2/BP-1	Nanofiltration - 3	CIEMAT-PSA	<u>Table 5-1</u>
Brine Concentration Brine Crystallization	CS1/BC-1	Forward-feed MED evaporator	THERMOSSOL / SOFINTER	Table 4-6
	CS1/BC-2	Forward-feed MED evaporator 2	NTUA/SEALEAU	Table 4-8
	CS1/BC-3	High Pressure Nanofiltration	LENNTECH	<u>Table 4-9</u>
	CS2/BC-1	Forward-feed MED evaporator 3	CIEMAT-PSA	Table 5-3
	CS1/BCr-1	Eutectic Freeze Crystallization (EFC)	TU DELFT	<u>Table 4-11</u>
	CS1/BCr-2	Laser induced cavitation crysatllization	TUDELFT	<u>Table 4-13</u>
	CS1/BCr-3	Multiple Feed Pulg Flow Reactor	UNIPA	<u>Table 4-14</u>

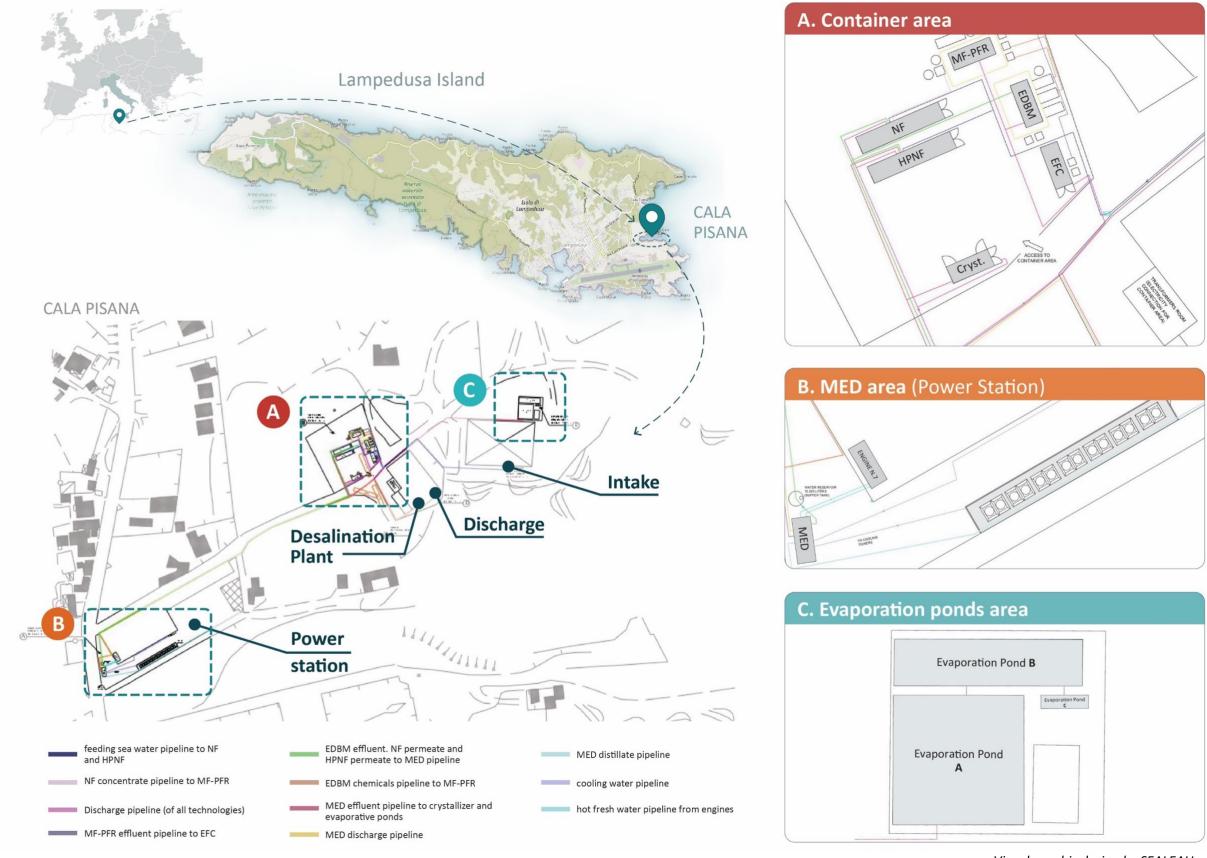


Figure 6-1: Installation site of Case Study 1 demonstration at the premises of SELIS power station, Lampdedusa Island, Italy

Visual graphic design by SEALEAU

Figure 6-2: Installation site of Case Study 2 demonstration at the premises of CIEMAT, Almeria, Spain

Visual graphic design by SEALEAU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 869474.